Gli acciai inossidabili (o Inox dal francese inoxydable o Stainless oppure Rostfrei) sono caratterizzati da una maggior resistenza alla ossidazione e alla corrosione, specie in aria umida o in acqua dolce, rispetto ai cosiddetti “acciai al carbonio” (o comune acciaio non legato).

Tale capacità è dovuta principalmente alla presenza del cromo, nella lega, in grado di passivarsi e cioè di ricoprirsi di uno strato sottile e aderente di ossidi, praticamente invisibile dello spessore pari a pochi strati atomici (dell’ordine dei 0,3-5 nm), che protegge superficialmente il metallo o la lega sottostante, dall’azione dell’ossigeno e degli agenti chimici esterni.

Il contenuto minimo di cromo “libero”, ossia non combinato al carbonio, per cui un acciaio si può ritenere Inossidabile è il 10,5% per cui poter avere la formazione dello strato di ossido “passivante” continuo e protettivo nei confronti dalla corrosione. Il cromo nella lega, infatti, combinandosi con il carbonio, può formare carburi di cromo, che limitano la disponibilità di tali elementi di lega a formare ossidi e, quindi, di passivarsi.

Generalmente si trovano valori tra 12 e 17% di cromo nella lega, ma nell’acciaio inox possono essere utilizzati anche altri elementi per aumentare la resistenza all’ossidazione e alla corrosione.

Storia

La scoperta dell’acciaio inossidabile si deve agli inglesi Woods e Clark, i quali nel 1872 brevettarono una lega di ferro contenente il 35% in peso di cromo e resistente agli acidi. L’industrializzazione tuttavia avvenne soltanto anni dopo quando nel 1913 Harry Brearley di Sheffield, sperimentando acciai per canne di armi da fuoco, scoprì che un suo provino di acciaio con il 13-14% di cromo e con un tenore di carbonio relativamente alto (0,25%) non si arrugginiva quando era esposto all’atmosfera. La prima menzione di questo progresso tecnologico risale al 1915 e si trova in un articolo del New York Times riguardo l’uso per posateria di questa classe di acciai, elogiandone la resistenza alla corrosione perfino a contatto con gli acidi organici contenuti nei cibi. Successivamente questa proprietà venne spiegata con la passivazione del cromo, che forma sulla superficie una pellicola di ossido estremamente sottile, continua e stabile.

I successivi progressi della metallurgia fra gli anni quaranta e sessanta del XX secolo hanno ampliato il loro sviluppo e le loro applicazioni.

Tuttora vengono perfezionati e adattati alle richieste dei vari settori industriali, come il petrolifero/petrolchimico, minerario, energetico, nucleare e alimentare.

Descrizione

Molto appropriata è la dizione anglosassone stainless (letteralmente “senza macchia”) derivata dalla capacità di questi materiali di ossidarsi (o, come si suol dire, passivarsi) ma non arrugginirsi negli ambienti atmosferici e naturali.

Il fenomeno della passivazione avviene per reazione del metallo con l’ambiente ossidante (aria, acqua, soluzioni varie, ecc).

La natura dello strato passivante, formato essenzialmente da ossidi/idrossidi di cromo, è autocicatrizzante e garantisce la protezione del metallo, anche se localmente si verificano abrasioni o asportazioni della pellicola, qualora la composizione chimica dell’acciaio e la severità del danno siano opportunamente inter-relazionate.

In particolare, il film passivo può essere più o meno resistente in funzione della concentrazione di cromo nella lega e in relazione all’eventuale presenza di altri elementi leganti quali il nichel, il molibdeno, il titanio.

Classificazione degli acciai inossidabili attraverso l’indice P.R.E.N.

Gli acciai inossidabili possono essere classificati attraverso la loro resistenza alla corrosione localizzata e, in particolare, alla vaiolatura. Questa classificazione si basa sulla composizione chimica e sul calcolo dell’indice Pitting Resistance Equivalent Number (P.R.E.N.); più questo indice è elevato, maggiore risulterà la resistenza alla vaiolatura. Questa classificazione è utilizzata in quanto di facile e agile determinazione, tuttavia va ricordato che non fornisce una descrizione completa ed esauriente delle proprietà di resistenza a corrosione degli acciai inossidabili. Gli acciai inossidabili possono quindi essere suddivisi in quattro categorie:

  • Acciai Inossidabili Magri: non contengono Molibdeno e il valore tipico del loro indice P.R.E.N. si attesta intorno a 25 (per esempio il 18-10)
  • Acciai Inossidabili Standard: sono caratterizzati da un indice P.R.E.N. tra 25 e 40 (per esempio l’AISI 316)
  • Acciai Inossidabili Super: possiedono un indice P.R.E.N. ≥ 40
  • Acciai Inossidabili Iper: contengono elevate percentuali di Cromo > 30% in peso e il valore dell’indice P.R.E.N. può raggiungere 50

Nomenclatura AISI

In commercio esistono vari tipi di acciai inox, conosciuti principalmente sotto la notazione di acciaio AISI (American Iron and Steel Institute, Istituto di unificazione statunitense per ferro e acciaio). La notazione AISI ha assunto erroneamente il significato di sinonimo per “acciaio inox”, poiché tale istituto codifica anche tipi differenti di acciaio La notazione AISI individua l’acciaio inox attraverso una sigla a tre cifre con possibile aggiunta di una lettera.

la prima di queste cifre indica la classe dell’acciaio:

  • serie 2XX – acciaio austenitico al cromo-nichel-manganese
  • serie 3XX – acciaio austenitico al cromo-nichel e cromo-nichel-molibdeno
  • serie 4XX – acciai ferritici o martensitici al cromo
  • serie 5XX – acciaio martensitico al cromo medio
  • serie 6XX – acciaio indurente per precipitazione al cromo

tra le lettere ad esempio:

  • la lettera “L” indica la bassa percentuale di carbonio (Low Carbon) presente. Questa caratteristica fa sì che l’acciaio leghi meno gas, in quanto il carbonio tende, in qualsiasi condizione, a legarsi con l’idrogeno, precipitando idrocarburi; la presenza di idrogeno è spesso penalizzante per l’acciaio, ad alte temperature e soprattutto in condizione di ionizzazione (radiazioni ionizzanti). L’atomo di idrogeno ionizzato (H+) è molto piccolo e ad alta temperatura si sposta con maggiore facilità nel reticolo dell’acciaio, rischia di accumularsi e provocare pericolose discontinuità. Il basso tenore di carbonio consente anche una buona saldabilità anche per spessori > 6 mm.
  • l’annotazione “N” sta a indicare la presenza di azoto disciolto nella lega. Grazie alle sue proprietà di gas inerte (il legame azoto-azoto è triplo, gli atomi sono molto vicini tra loro e perciò si separano difficilmente), l’azoto funge da schermo sull’acciaio limitandone la contaminazione esterna.
  • L’annotazione “Ti” sta a indicare la presenza di titanio il quale assicura una completa resistenza alla corrosione nelle saldature di elementi di grosso spessore.

Sigle commerciali

I vari acciai inox differiscono in base alla percentuale in peso degli elementi costituenti la lega.
Tra gli acciai più comunemente utilizzati distinguiamo:

  • 304 – Cr (18%) Ni (10%) C (0,05%);
  • 304 L – (Low Carbon): Cr (18%) Ni (10%) C (< 0.03%);
  • 316 – Cr (16%) Ni (11.3/13 %) Mo (2/3 %)
  • 316 L – (Low Carbon): Cr (16,5/18,5%) Ni (10,5/13,5%) Mo (2/2,25%) C (< 0.03%);
  • 316 LN – (Low Carbon Nitrogen) (presenza di azoto disciolto nel reticolo cristallino del materiale);
  • 316 LN ESR (electro-slag remelting);
  • 430: Cr (16/18 %) C (0,08%).

Questi materiali possono essere anche stabilizzati al titanio o al niobio come:

  • 316 Ti
  • 316 Nb
  • 430 Ti.

La posizione del ferro all’interno della lega influenza diverse caratteristiche del materiale, di elevata importanza per il suo utilizzo.
La principale è la amagneticità:

  • nella disposizione a corpo centrato il materiale evidenzia proprietà ferritiche e perciò magnetiche;
  • in quella a facce centrate l’acciaio è austenitico e perciò paramagnetico.

Come già accennato in precedenza, gli AISI 304 e 316 appartengono alla famiglia degli acciai a struttura austenitica mentre l’AISI 420 è a struttura martensitica.
La differenza tra l’acciaio 304 e 316, a parte il costo maggiore e la presenza nel 316 di Mo, è data dalla più elevata austenicità del secondo grazie alla più alta percentuale di nichel.
Sebbene questi acciai conservino la struttura austenitica, in alcuni casi restano nella massa grani cristallini isolati che mantengono una struttura ferritica, derivata dalla ferrite δ.

X5CrNi18-10304
X2CrNi18-11304 L
X8CrNi18-12305
X5CrNiMo17-12-2316
X2CrNiMo17-12-2316 L
X6CrNiMoTi17-12-2316 Ti
X6CrNiTi18-10321
X6CrNiNb18-10347
X12Cr13410
X12CrS13416
X20Cr13420
X30Cr13420
X40Cr14420
X6Cr17430
X10CrS17430 F
X16CrNi16431

Armature inossidabili

Le barre di acciaio inox utilizzate per strutture in calcestruzzo armato in genere sono realizzate con acciai inossidabili di microstruttura austenitica o duplex austeno-ferritica. I primi contengono 17-18% di Cr e 8-10% di Ni, mentre i secondi contengono 22-26% di Cr e 4-8% di Ni.

Le armature in acciaio inox, al contrario delle armature comuni in acciaio al carbonio, rientrano nel gruppo delle armature poco sensibili alla corrosione. Infatti gli acciai inossidabili possono resistere alla corrosione in presenza di calcestruzzo con un contenuto di cloruri molto elevato, anche quando questo è carbonatato. Invece nel calcestruzzo non carbonatato e non inquinato da cloruri, le barre di acciaio inossidabile si comportano come le normali barre di acciaio al carbonio, pertanto non apportano alcun vantaggio nei confronti della resistenza alla corrosione della struttura.

Le barre d’acciaio inossidabile però devono garantire le stesse prestazioni meccaniche (resistenza allo snervamento e la duttilità) richieste alle normali barre d’armatura. A tal fine le armature di acciaio inossidabile austenitico vengono sottoposte a trattamenti di rafforzamento mentre per gli acciai inossidabili duplex, tali trattamenti non sono indispensabili.

L’utilizzo dell’armatura inossidabile è limitato dall’elevato costo, il quale può avere un rilevante impatto sul costo necessario alla realizzazione dell’intera struttura. Infatti le barre in acciaio inox, in funzione della composizione chimica, costano da sei a dieci volte in più rispetto alle armature comuni in acciaio al carbonio. L’utilizzo di barre in acciaio inossidabile pertanto viene limitato per la realizzazione di opere in condizioni ambientali d’elevata aggressività, soprattutto legata alla presenza d’acqua di mare o di sali disgelanti (azione dei cloruri), oppure nei casi in cui, per l’importanza della struttura, sia richiesta una vita di servizio molto lunga. In questi casi infatti la protezione offerta dal copriferro può risultare insufficiente a prevenire la corrosione, e pertanto l’acciaio inox può garantire la durata richiesta per l’opera senza dover ricorrere successivamente a costose e complesse manutenzioni straordinarie che, in alcuni casi, risultano più onerose del costo iniziale dovuto alla scelta dell’armatura inossidabile. Il costo di costruzione si può ridurre limitandone l’utilizzo alle parti più vulnerabili della struttura o alle zone in cui lo spessore di copriferro deve essere ridotto, come negli elementi snelli o nei rivestimenti di facciata. In questo caso è necessario che l’armatura al carbonio e quella inox non entrino mai in contatto per evitare fenomeni di corrosione elettrochimica.

Gli acciai inossidabili austenitici hanno un coefficiente di dilatazione termica di circa 1,8 × 10−5  °C−1, maggiore sia di quello del calcestruzzo (circa 10-5 °C−1) sia di quello delle comuni armature (1,2 × 10-5  °C−1). Il maggiore coefficiente di dilatazione termica potrebbe creare situazioni sfavorevoli nel caso di incendi, tuttavia l’acciaio inossidabile austenitico ha una conducibilità termica notevolmente inferiore rispetto all’acciaio al carbonio.

Acciaio inox per alte temperature

Questi acciai inox sono stati messi a punto per operare a elevata temperatura in condizioni ossidanti. La percentuale di cromo è del 24% e il nichel va dal 14 al 22%.

Le proprietà fondamentali sono resistenza all’ossidazione (sfaldatura) ad alta temperatura e buona resistenza meccanica alle alte temperature.

Gli impieghi più comuni avvengono in parti di forni, tubi irradianti e rivestimenti di muffole, per temperature di esercizio fra 950 e 1100 °C.

Acciai da ultra alto vuoto e criogenia

Il metallo più utilizzato in UV e in UHV è un acciaio inox che col ferro, ha cromo, nichel, con tracce di silicio, carbonio, manganese, molibdeno, niobio e titanio, è utilizzato come costituente strutturale dell’ambiente da vuoto, ha il vantaggio di essere reperibile e relativamente economico, ha proprietà di resistenza meccanica abbastanza elevate, non si tempra, si salda con facilità, ha un basso degasaggio, è abbastanza inerte chimicamente.

Nell’UV si necessita di una tipologia d’acciaio austenitico (AISI 316), poiché possiede una struttura molto legata e di conseguenza meno attaccabile chimicamente.
La presenza di metalli refrattari, come il molibdeno, aiuta a legare elettro-chimicamente gli atomi di ferro, conferendone maggiore inerzia e un grado di durezza superiore (circa 180 gradi Vickers).
L’acciaio austenitico permette di utilizzare la lega anche nell’UHV, poiché l’amagneticità strutturale le dona un’inerzia quasi totale alle interazioni “deboli” garantendo un vuoto più pulito.
La presenza di cromo, nonostante le sue caratteristiche ferriticizzanti, conferisce all’acciaio stabilità ed elasticità, garantendone così duttilità e malleabilità.
Resta comunque il fatto che, in questa tecnologia, l’acciaio più utilizzato sia quello austenitico.
La sua temperatura di fusione è di 1435 °C, tuttavia dobbiamo considerare che, durante la saldatura, nell’intervallo di temperatura tra i 600 e gli 800 °C, si trasforma, o meglio decade, da austenitico a ferritico (come indicato nel diagramma di sensibilizzazione di Schaeffler).
Il suo decadimento è più rapido e permanente per gli acciai 304 rispetto ai 316.
Periodo di sensibilizzazione:

  • 304: 10 minuti;
  • 304 L: 30 minuti;
  • 316 L: un’ora.

Più esteso è questo periodo (la estensione è proporzionale alla presenza di nickel), più il materiale è affidabile.
Per ridurre ulteriormente il degasaggio della lega 316 si effettua il processo di electro slag remelting, in cui la stessa viene rifusa in un forno a radiofrequenze, in modo da eliminare le microscorie di ossidi e di carburi, che, oltre a “sporcare” il vuoto, la rendono più ferritica. Il 316 L N ESR, poiché molto costoso, viene utilizzato limitatamente e prevalentemente negli acceleratori di particelle.
L’acciaio è costituente delle camere da vuoto, delle flange e di eventuali altri elementi come bulloni e dadi; in ogni modo, una camera da vuoto in acciaio richiede ulteriori trattamenti finalizzati a diminuire il costante degasaggio di idrogeno dalle sue pareti. Uno dei principali è il vacuum firing, con il quale l’acciaio viene in primo luogo scaldato a 1400 °C e poi rapidamente raffreddato, per attraversare celermente la zona di sensibilizzazione senza decadere in ferritico. Così, oltre alla diminuzione della percentuale di azoto sulle superfici, si ottiene un aumento della sua austeniticità.

Problematiche specifiche

Contaminazione ferrosa

La resistenza alla corrosione dell’acciaio inox può essere messa in pericolo dalla contaminazione ferrosa derivante da particelle provenienti da operazioni di taglio, rettifica e saldatura dell’acciaio al carbonio. La presenza di contaminazioni sulle superfici del metallo, oltre a creare un difetto estetico può dar luogo a inneschi di corrosione localizzata (pitting), anche solo a contatto con aria, pregiudicando la giusta condizione di passività nel tempo. Infatti, le particelle di ferro che si depositano sulla superficie dell’acciaio inox, ad esempio a causa di spruzzi di saldatura di componenti di acciaio al carbonio, si ossidano molto velocemente formando la ruggine, anche solo in presenza dell’umidità atmosferica, causando un’antiestetica macchiatura della superficie, che in alcuni casi, ostacolando il fenomeno di naturale passivazione dell’acciaio inox, può evolvere in fenomeni di pitting. Per questa ragione la lavorazione dell’acciaio al carbonio e quella dell’acciaio inossidabile devono avvenire in due zone distinte e separate.

Inoltre, gli attrezzi manuali (es. spazzole) e i macchinari utilizzati (es. presse), non devono contenere acciaio al carbonio e devono essere puliti in maniera approfondita quando si passa dall’acciaio al carbonio all’acciaio inossidabile. Le lavorazioni di taglio, saldatura o sabbiatura non devono essere fatte con elementi contenenti acciaio al carbonio (es. dischi abrasivi, elettrodi, graniglia). Per lo stesso motivo, nello stoccaggio e nella movimentazione dell’acciaio inossidabile, deve essere evitato qualsiasi contatto con attrezzi di acciaio al carbonio, ad esempio forche di elevatori, catene, scaffalature, ecc.

Per verificare la avvenuta contaminazione esistono appositi test. Una volta contaminato l’acciaio inox, può esserne effettuata la decontaminazione mediante trattamento con specifiche paste passivanti a base di acido fosforico o nitrico. Per rimuovere qualunque traccia di soluzione acida e contaminanti disciolti si dovrà risciacquare l’acciaio con acqua deionizzata e asciugare la parte pulita. In questo caso è necessario trattare l’intera superficie inox, per evitare l’effetto “a chiazze”. Gli stessi prodotti possono essere utilizzati nel caso di ossidazione dovuta a un’elevata esposizione ad agenti corrosivi quali la salsedine. La contaminazione ferrosa è quella più ricorrente sugli acciai inox, ma si possono comunque verificare fenomeni di contaminazione da altri metalli non ferrosi, come alluminio, rame, piombo, ecc. Le modalità per eliminare le tracce contaminanti sono le stesse consigliate per le tracce ferrose.

Sensibilizzazione

La sensibilizzazione degli acciai inossidabili è un problema legato alla corrosione e coinvolge principalmente gli acciai inossidabili aventi un elevato tenore di carbonio. Questo fenomeno metallurgico di degrado del materiale corrisponde alla precipitazione di carburi di cromo ai bordi dei grani cristallini. Ciò avviene a seguito di esposizione a temperature comprese tra i 450 °C e i 950 °C. Tale precipitazione porta nelle zone adiacenti a un impoverimento di cromo e più in generale degli alliganti passivanti che garantiscono la formazione del film protettivo superficiale di ossidi. Di conseguenza qualora il materiale verrà esposto ad ambienti aggressivi verrà portato alla disgregazione della matrice metallica, a seguito di una corrosione preferenziale lungo i bordi grano cristallini.

Giunzioni

I manufatti in acciaio inox vengono frequentemente giuntati mediante saldatura e bullonatura. Un errore comune è quello di utilizzare elettrodi e bulloni contenenti acciaio al carbonio invece di utilizzarli zincati. Oltre al problema della contaminazione ferrosa, il mettere a contatto l’acciaio inox con un materiale meno nobile determina l’innesco di celle galvaniche, nel momento in cui un elettrolita entra in gioco, con conseguente corrosione del materiale meno nobile.

Normativa di riferimento

  • UNI EN 10088-1:2005 – Acciai inossidabili – Parte 1: Lista degli acciai inossidabili
  • ASTM A-967 – Standard specification for chemical passivation treatments of stainless steel parts
  • Gazzetta Ufficiale – Repubblica Parte 1 n. 104 del 20-04-1973 (Supplemento Ordinario): Materiali a contatto con alimenti

Parole chiave

serbatoi inox
serbatoi acciaio inox
serbatoi in acciaio inox
serbatoio acciaio inox
serbatoio in acciaio inox
serbatoio acciaio inox per olio
serbatoio acciaio inox prezzo
silos acciaio inox
silos acciaio inox per olio
silos acciaio inox per vino
silos olio acciaio inox
cisterna acciaio inox
cisterna inox
impianti enologici
costruzioni acciaio inox
serbatoi latte
stoccaggio vino
stoccaggio latte
serbatoio per latte
serbatoi enologici
commercio serbatoi
cisterne acciaio inox usate
botti in acciaio per vino usate
serbatoi inox usati
vinificatori usati
filtri a carbone attivo
filtri a carbone attivo per acqua potabile
filtri a carbone attivo per acqua
filtro a carboni attivi
costruzione serbatoi inox
vasche inox
vasche acciaio inox
vasche in acciaio inox